Wallace High School

27/1/11

Prelim Examination 2010/2011

MATHEMATICS
 National Qualifications - Intermediate 2
 Maths 1 and 2
 Paper 1 (non-calculator)

Time allowed - 45 minutes

Read carefully

1. You may NOT use a calculator.
2. Full credit will be given only where the solution contains appropriate working.
3. Square-ruled paper is provided.

FORMULAE LIST

The roots of $a x^{2}+b x+c=0$ are $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Sine rule:

$$
\frac{a}{\sin \mathrm{~A}}=\frac{b}{\sin \mathrm{~B}}=\frac{c}{\sin \mathrm{C}}
$$

Cosine rule:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos \mathrm{~A} \text { or } \cos \mathrm{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Area of a triangle: \quad Area $=1 / 2 a b \sin \mathrm{C}$

Volume of a sphere: \quad Volume $=\frac{4}{3} \pi r^{3}$

Volume of a cone: \quad Volume $=\frac{1}{3} \pi r^{2} h$

Volume of a cylinder: \quad Volume $=\pi r^{2} h$

Standard deviation: $\quad s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\sum x^{2}-\left(\sum x\right)^{2} / n}{n-1}}$, where n is the sample size.

1. A line has equation $2 y+6 x=9$.

Find its gradient and y-intercept.
2. The number of people attending an emergency dental clinic over the course of 4 weeks was recorded.

12	14	13	14	17	18	20	13	16	13
12	15	16	20	14	19	16	15	17	17

(a) Show the above information in a dot plot.
(b) Comment on the shape of the distribution.
3. The String section of the Scottish National Orchestra has

26 violinists
12 violists
10 cellists
7 double bass players.
If a player is chosen at random from the String section, what is the probability that it will be a cellist?
4. Multiply the brackets and simplify

$$
4 x-(x-4)(2 x+1)
$$

5. Factorise $a^{2}-64 b^{2}$
6. The diagram shows a cone with radius 10 centimetres and height 30 centimetres.

Taking $\pi=3 \cdot 14$, calculate the volume of the cylinder.

7. Solve, algebraically, the system of equations

$$
\begin{aligned}
3 x+2 y & =13 \\
x & =y+1
\end{aligned}
$$

8. The diagram shows a circle, centre O, with a letter ' T ' inside it. The width of the ' T ' is 8 cm and the radius of the circle is 5 cm .

Calculate the height, $h \mathrm{~cm}$, of the ' T '.

9. A group of S3 pupils produced the following set of Bleep Test results in PE before they started their Standard Grade course in August.
$24,30,31,36,36,42,45,50,51,55,58,62,66,72,78,82,94,96,101,115,126$
(a) Write down the lower quartile, median and upper quartile of the data.
(b) Construct a box plot to illustrate the data.

In December, the Bleep Test was repeated and this box plot drawn.

(c) Compare the data in August with the data in December.

Qu	Answer and Marks	Examples of Evidence
1	ans : $m=-3 ;(0,4 \cdot 5)$ - ${ }^{1}$ rearranges equation to $y=m x+c$ - ${ }^{2}$ states gradient - ${ }^{3}$ states y-axis intercept	- $1 \quad y=-3 x+4 \cdot 5$ - ${ }^{2} \quad m=-3$ - $\quad(0,4 \cdot 5)$
$2 a$ b	ans : \quad dot plot drawn $\mathbf{2}$ marks $\bullet \bullet^{1}$ suitable scale \bullet dots added ans: \quad uniform distribution $\mathbf{1}$ mark \bullet \bullet correct description	- ${ }^{1}$ see end - ${ }^{2}$ see end [allow two errors] - ${ }^{1}$ uniform distribution
3	ans: 10/55[or 2/11] 2 marks - ${ }^{1}$ correct numerator - ${ }^{2}$ correct denominator	$\begin{array}{lll}\bullet 1 & 10 / \ldots \ldots . & \text { [No need to simplify- do not } \\ \bullet & \ldots \ldots / 55 & \text { penalize if simplified] }\end{array}$
4	ans : $4+11 x-2 x^{2} \quad 3$ marks - ${ }^{1}$ multiplies brackets - ${ }^{2}$ simplifies - ${ }^{3}$ answer	- ${ }^{1} 4 x-\left[2 x^{2}-8 x+x-4\right]$ - ${ }^{2} 4 x-2 x^{2}+7 x+4$ ${ }^{3} 4+11 x-2 x^{2}$
5	ans : $(a-8 b)(a+8 b) \quad 2$ marks - ${ }^{1}$ recognises diff. of two squares - 2 factorises correctly	- ${ }^{1}$ evidence $\bullet^{2} \quad(a-8 b)(a+8 b)$
6	ans: $\mathbf{3 1 4 0} \mathrm{cm}^{\mathbf{3}} \quad \mathbf{3}$ marks - ${ }^{1}$ subs values into formula - ${ }^{2}$ attempts to simplify before calculation - ${ }^{3}$ answer	- $1 \mathrm{~V}=1 / 3 \times 3 \cdot 14 \times 10^{2} \times 30$ - ${ }^{2}$ evidence - $3140 \mathrm{~cm}^{3}$
7	ans : $x=3 ; y=2 \quad 4$ marks - ${ }^{1} \quad$ subs for x - ${ }^{2}$ solves for y -3 knows to sub - ${ }^{4}$ solves for x	- ${ }^{1} 3(y+1)+2 y=13$ -2 $\quad y=2$ - ${ }^{3}$ subs for y - ${ }^{4} x=3$
8	ans : $\quad \mathbf{8 c m}$ 4 marks \bullet^{1} assembles facts in RAT $\bullet \bullet^{2}$ knows to use Pythagoras \bullet^{3} finds missing side 4 \bullet answer	

Qu	Answer and Marks		Examples of Evidence	
9 a	ans: 39; 58; 88 - ${ }^{1}$ identifies lower quartile - ${ }^{2}$ identifies median - ${ }^{3}$ identifies upper quartile	3 marks	- $\mathrm{Q}_{1}=39$ - ${ }^{2} \quad \mathrm{Q}_{2}=58$ $\bullet^{3} \quad \mathrm{Q}_{3}=88$	
b	ans: box plot drawn - ${ }^{1}$ scale shown $\bullet^{2} \quad$ correct box and whiskers	2 marks	- ${ }^{1}$ suitable scale - ${ }^{2}$ diagram drawn	
c	ans: comparison - ${ }^{1}$ compares data	1 mark	- ${ }^{1}$ any suitable comparison	
			Total	30 marks

Wallace High School

27/1/11

Prelim Examination 2010/2011

MATHEMATICS
 National Qualifications - Intermediate 2
 Maths 1 and 2
 Paper 2

Time allowed - $\mathbf{1}$ hour 30 minutes

Read carefully

1. Calculators may be used in this paper.
2. Full credit will be given only where the solution contains appropriate working.
3. Square-ruled paper is provided.

FORMULAE LIST

The roots of $a x^{2}+b x+c=0$ are $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Sine rule:

$$
\frac{a}{\sin \mathrm{~A}}=\frac{b}{\sin \mathrm{~B}}=\frac{c}{\sin \mathrm{C}}
$$

Cosine rule:
$a^{2}=b^{2}+c^{2}-2 b c \cos \mathrm{~A}$ or $\cos \mathrm{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

Area of a triangle: \quad Area $=1 / 2 a b \sin C$

Volume of a sphere: \quad Volume $=\frac{4}{3} \pi r^{3}$

Volume of a cone: \quad Volume $=\frac{1}{3} \pi r^{2} h$

Volume of a cylinder: \quad Volume $=\pi r^{2} h$

Standard deviation: $\quad s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\sum x^{2}-\left(\sum x\right)^{2} / n}{n-1}}$, where n is the sample size.

1. In the Garden centre there are 2 types of plants on special offer.

This week's
specials!
Rose bushes
and
Poppy plants

Carly bought 3 Rose bushes and 2 Poppy plants which cost $£ 15.23$
Steph paid $£ 26.71$ for 4 Poppy plants and 5 Rose bushes.
How much would Sally pay for a Rose bush and 3 Poppy plants?
2. Multiply and collect like terms

$$
(2 x-3)\left(x^{2}+5 x-6\right)
$$

3.

A Christmas bauble is made from a sphere of perspex with a coloured cylinder in the middle. The volume round the cylinder is filled with a thick liquid.

The sphere has a diameter of 8 cm . The cylinder has a radius of 2.6 cm with a height of 6 cm .

Calculate the volume of liquid needed to fill the sphere, giving your answer correct to 2 significant figures.
4. The diagram shows a circle centre $\mathrm{O} . \mathrm{AB}$ is a diameter and C is a point on the circumference of the circle.

Calculate the size of the shaded angle.

5. In Bramley's Toy Shop there are 6 styles of teddy bear. The price of each is shown below.
£19 £25 £17 £32 £20 £22
(a) Calculate the mean and standard deviation of these prices.

In the same shop the prices of the dolls have a mean of $£ 22.50$ and a standard deviation of $2 \cdot 3$.
(b) Compare the two sets of data making particular reference to the spread of the prices.
6. Two congruent circles overlap to form the symmetrical shape shown below. Each circle has a diameter of 12 cm and have centres at B and D.

Calculate the area of the shape.
7. The pie chart shows the number of gold medals won by 8 countries in the 2010 Winter Olympics.

(a) If Norway won 8 gold medals, how many did Canada win?
(b) South Korea and Switzerland won the same number of gold medals. What percentage of the gold medals did each of these countries win?
8. Marcus invested $£ 3000$ in a bank which paid $2 \cdot 5 \%$ interest per year.
(a) Calculate how much money Marcus would have in his account after 3 years.
(b) How long would it take for Marcus' money to increase by 12% ?
9. Factorise $4 x^{2}-17 x-15$ 2
10. In triangle $\mathrm{PQR}, \mathrm{PR}=10 \mathrm{~cm}$ $\mathrm{QR}=4 \mathrm{~cm}$. The perimeter of the triangle is 22 cm .

Find the size of angle PQR.

11. A group of smokers were asked how many cigarettes they smoked in a day and how many chest infections they had suffered in the last ten years. The results are shown in the scattergraph with the line of best fit drawn.

(a) Comment on the correlation between the 2 sets of data.
(b) Find the equation of the line of best fit.
12. In the diagram shown $\mathrm{SR}=5 \mathrm{~cm}$, angle $\mathrm{SQR}=37^{\circ}$, angle $\mathrm{QPS}=34^{\circ}$ and angle $\mathrm{PQS}=68^{\circ}$.

Calculate the length of PS.

End of question paper

\begin{tabular}{|c|c|c|}
\hline Qu \& Answer and Marks \& Examples of Evidence \\
\hline 1 \& \begin{tabular}{l}
ans : £9.72 \\
- \({ }^{1}\) sets up equations \\
\(\bullet^{2}\) strategy for solving equations \\
\({ }^{3}{ }^{3}\) solves for one variable \\
\(-{ }^{4}\) finds other variable \\
- \({ }^{5}\) substitutes values and calculates cost
\end{tabular} \& \begin{tabular}{l}
- \(\quad 3 \mathrm{R}+2 \mathrm{P}=15 \cdot 23 ; 5 \mathrm{R}+4 \mathrm{P}=26 \cdot 71\) \\
- \({ }^{2}\) evidence of scaling equations \\
- \({ }^{3} \quad \mathrm{R}=3.75\) \\
- \({ }^{4} \quad \mathrm{P}=1.99\) \\
\(\bullet^{5} \quad 3.75+3 \times 1.99=9.72\)
\end{tabular} \\
\hline 2 \& \begin{tabular}{l}
ans: \(2 x^{3}+7 x^{2}-27 x+18 \quad 3\) marks \\
- \({ }^{1}\) starts to multiply brackets \\
- \({ }^{2}\) completes multiplying brackets \\
- \({ }^{3}\) simplifies
\end{tabular} \& \begin{tabular}{l}
- \({ }^{1} 2 x^{3}+10 x^{2}-12 x \ldots \ldots \ldots\) \\
- \(\quad\). \(\ldots .-3 x^{2}-15 x+18\) \\
- \(2 x^{3}+7 x^{2}-27 x+18\) [must include \(x^{3}\) term]
\end{tabular} \\
\hline 3 \& \begin{tabular}{l}
ans : \(140 \mathrm{~cm}^{3} \quad 5\) marks \\
- \({ }^{1}\) strategy \\
- \({ }^{2}\) subs values into formula for sphere \\
- \({ }^{3}\) subs values into formula for cylinder \\
- \({ }^{4}\) subtracts to answer \\
- 5 correct rounding
\end{tabular} \& \begin{tabular}{l}
- \({ }^{1}\) finding 2 volumes and subtracting \\
- \({ }^{2} V_{\text {sphere }}=4 / 3 \times \pi \times 4^{3}=268.0825731\) \\
- \({ }^{3} V_{\text {cylinder }}=\pi \times 2 \cdot 6^{2} \times 6=127 \cdot 422998\) \\
- \({ }^{4} 140.6595751\) \\
- \(5140 \mathrm{~cm}^{3}\)
\end{tabular} \\
\hline 4 \& \begin{tabular}{l}
ans: \(\mathbf{1 3 8}^{\mathbf{0}} 3\) marks \\
- \({ }^{1}\) recognises angle in semi-circle \\
- \({ }^{2}\) uses angle in a triangle \\
-3 uses angle in straight line
\end{tabular} \& \begin{tabular}{l}
- \({ }^{1}\) angle \(\mathrm{ACB}=90^{\circ}\) \\
- \({ }^{2} \quad 180-(48+90)=42^{\circ}\) \\
- \({ }^{3} \quad 180-42=138^{\circ}\)
\end{tabular} \\
\hline 5a

b \& \begin{tabular}{l}
ans: $£ 22 \cdot 50,5 \cdot 4$

- ${ }^{1}$ calculates mean

- 2 squares deviations and adds

- ${ }^{3}$ substitutes into formula

- ${ }^{4}$ calculates standard deviation

ans : appropriate statement

1 mark

- ${ }^{1}$ appropriate comment re spread

 \&

- ${ }^{1} £ 135 \div 6=£ 22.50$

- $^{2} \quad 12 \cdot 25+6 \cdot 25+30 \cdot 25+90 \cdot 25+6 \cdot 25+0 \cdot 25$ $=145.5$

- ${ }^{3} \quad \mathrm{SD}=\sqrt{ }(145 \cdot 5 / 5)$

- ${ }^{4} \quad 5 \cdot 4$

- ${ }^{1}$ prices of dolls are less spread out than teddies
\end{tabular}

\hline 6 \& | ans: $205.6 \mathrm{~cm}^{2} \quad 5$ marks |
| :--- |
| - ${ }^{1}$ realises sector of circle |
| - ${ }^{2}$ uses correct radius |
| - 3 finds area of one sector |
| - ${ }^{4}$ finds area of square |
| - 5 finds total area | \& | - ${ }^{1}$ 270/360........ |
| :--- |
| - ${ }^{2} r=6 \mathrm{~cm}$ [could be in formula] |
| $\bullet^{3} \quad \ldots \ldots \times \pi \times 6^{2} \times 2=169 \cdot 646 \ldots$ |
| - ${ }^{4} \quad 6 \times 6=36$ |
| - $205.6 \mathrm{~cm}^{2}$ |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Qu \& Answer and Marks \& Examples of Evidence \\
\hline 7a \& \begin{tabular}{l}
ans : 13 gold medals \\
- \({ }^{1}\) equates angle to number of medals \\
- \({ }^{2}\) finds number of medals \\
ans : \(\mathbf{1 0 \%} \quad 2\) marks \\
- \({ }^{1}\) finds total of others \\
- \({ }^{2}\) subtracts and divides
\end{tabular} \& \begin{tabular}{l}
- \({ }^{1} 48^{\circ}\) represents 8 medals; \(6^{\circ}\) one medal \\
- \({ }^{2} 78 \div 6=13\) medals \\
- \({ }^{1} \quad 360-(18+30+78+60+54+48)=72\) \\
- \({ }^{2} 36 \div 360 \times 100=10 \%\)
\end{tabular} \\
\hline 8a

b \& \begin{tabular}{l}
ans: $£ 3230.67$

- ${ }^{1}$ uses correct multiplier

-2 knows how to increase

- ${ }^{3}$ answer

ans: 5 years

3 marks

- ${ }^{1}$ increases by 12%

- ${ }^{2}$ strategy

- ${ }^{3}$ answer

 \&

- ${ }^{1} \quad \ldots \times 1 \cdot 025$

- ${ }^{2} \quad 3000 \times 1.025^{3}$

- ${ }^{3}$ £3230.67

- ${ }^{1} \quad 3000 \times 1 \cdot 12=3360$

- ${ }^{2}$ trial and error [$3000 \times 1 \cdot 025^{\mathrm{n}}$]

- ${ }^{3} 5$ years
\end{tabular}

\hline 9 \& | ans : $(4 x+3)(x-5) \quad 2$ marks |
| :--- |
| - ${ }^{1}$ first factor correct |
| - ${ }^{2}$ second factor correct | \&

\hline 10 \& | ans : $108 \cdot 2^{0} \quad 4$ marks |
| :--- |
| - ${ }^{1}$ finds missing side |
| - ${ }^{2}$ knows to use cosine rule |
| - ${ }^{3}$ subs values into rule |
| - ${ }^{4}$ finds angle | \& | - ${ }^{1} \quad 22-(4+10)=8 \mathrm{~cm}$ |
| :--- |
| - ${ }^{2}$ evidence |
| - ${ }^{3}\left(4^{2}+8^{2}-10^{2}\right) \div(2 \times 4 \times 8)=-0 \cdot 3125$ |
| - ${ }^{4} \quad 108.2^{0}$ |

\hline 11a

b \& \begin{tabular}{ll}
ans : \quad strong positive \& $\mathbf{1}$ mark

- $1 \quad$ comment on correlation \&

ans : $\quad \boldsymbol{I}=\mathbf{1} / 7 \boldsymbol{C}+\mathbf{1}$ \& $\mathbf{2}$ marks

- \quad finds gradient and y-intercept \&

$\bullet^{2} \quad$ states equation of line \&

\hline

 \&

- ${ }^{1}$ strong positive correlation

- ${ }^{1} \quad m=5 / 35=1 / 7 ; c=1$

- $\quad I=1 / 7 C+1$
\end{tabular}

\hline 12 \& | ans : 11.0 cm 5 marks |
| :--- |
| - ${ }^{1}$ knows to find QS |
| - ${ }^{2}$ answer |
| -3 knows to use sine rule |
| - ${ }^{4}$ subs values |
| - ${ }^{5}$ answer | \& | - ${ }^{1}$ uses SOH CAH TOA |
| :--- |
| - ${ }^{2}$ 6.635...cm |
| - ${ }^{3}$ evidence |
| - ${ }^{4} \quad 6 \cdot 635 . . / \sin 34^{\circ}=\mathrm{PS} / \sin 68^{\circ}$; PS $=6.635 . . \sin 68^{\circ} / \sin 34^{\circ}$ |
| - ${ }^{5} 11.0 \mathrm{~cm}$ |
| [ignore premature rounding] |

\hline \& \& Total 50 marks

\hline
\end{tabular}

